70 research outputs found

    Rosacea as a Disease of Cathelicidins and Skin Innate Immunity

    Get PDF
    Rosacea is a common and chronic inflammatory skin disease most frequently seen in groups of genetically related individuals. Although the symptoms of rosacea are heterogeneous, they are all related by the presence of characteristic facial or ocular inflammation involving both the vascular and tissue stroma. Until recently, the pathophysiology of this disease was limited to descriptions of a wide variety of factors that exacerbate or improve disease. Recent molecular studies show a common link between the triggers of rosacea and the cellular response, and these observations suggest that an altered innate immune response is involved in disease pathogenesis. Understanding rosacea as a disorder of innate immunity explains the benefits of current treatments and suggests new therapeutic strategies for alleviating this disease

    Therapy-Resistant, Spontaneously Remitting Generalized Neutrophilic Eccrine Hidradenitis in a Healthy Patient Decreases the Expression of Dermcidin in Affected Eccrine Glands

    Get PDF
    We describe a healthy 69-year-old Japanese man with generalized neutrophilic eccrine hidradenitis (NEH). He visited our outpatient clinic with a 15-year history of disseminated pruritic papules on his trunk and extremities; the eruptions, however, were limited to the summer months. Histological findings reveal a dense accumulation of neutrophils around the sweat glands with degenerated secretary coils. Interestingly, immunohistochemical staining showed that the expression of dermcidin on the secretory portion of eccrine glands was significantly decreased in the affected lesion. To our knowledge, this is the first report in English of generalized NEH in a healthy adult that shows the downregulation of the expression of dermcidin in affected eccrine glands

    TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes.

    Get PDF
    A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea

    Suppression of Propionibacterium acnes

    Get PDF
    Purpose. Macrophages serve as sweepers of microbes and inflammation-derived wastes and regulators of inflammation. Some traditional Japanese medicines are reported to have adjuvant effects by modifying macrophages. Our aim was to characterize the actions of jumihaidokuto (JHT) for treatment of skin inflammations including acne vulgaris, in which Propionibacterium acnes has pathogenic roles. Methods. Dermatitis was induced in rat ears by intradermal injection of P. acnes. JHT or prednisolone (PDN) was given orally, and ear thickness and histology were evaluated. The effects of constituents and metabolites of JHT on monocytes were tested by cell-based assays using the human monocytic THP-1 cell. Results. JHT and PDN suppressed the ear thickness induced by P. acnes injection. Histological examinations revealed that JHT, but not PDN, promoted macrophage accumulation at 24 h after the injection. PDN suppressed the macrophage chemokine MCP-1 in the inflamed ears, while JHT did not affect it. The JHT constituents liquiritigenin and isoliquiritin increased expression of CD86 (type-1 macrophage marker) and CD192 (MCP-1 receptor) and enhanced phagocytosis by THP-1. Conclusions. JHT suppressed dermatitis, probably by enhancing type-1 macrophage functions, with an action different from PDN. JHT may be a beneficial drug in treatment of skin inflammation induced by P. acnes

    TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media

    Get PDF
    Otitis media is the most prevalent childhood disease in developed countries. The involvement of Toll-like receptors (TLRs) in otitis media pathophysiology has been implicated by studies in cell lines and association studies of TLR gene polymorphisms. However, precise functions of TLRs in the etiology of otitis media in vivo have not been examined. We investigated the inflammatory response to nontypeable Haemophilus influenzae using a model of otitis media in wild-type, TLR2−/− and TLR4−/− mice by gene microarray, qPCR, immunohistochemistry, Western blot analysis and histopathology. Toll-like receptor-2−/− and TLR4−/− mice exhibited a more profound, persistent inflammation with impaired bacterial clearance compared to controls. While wild-type mice induced tumor necrosis factor-α (TNF) after non-typeable H. influenzae challenge, TLR2−/− and TLR4−/− mice lack TNF induction in the early phase of otitis media. Moreover, lack of TLR2 resulted in a late increase in IL-10 expression and prolonged failure to clear bacteria. Toll-like receptor-4−/− mice showed impaired early bacterial clearance and loss of TLR2 induction in early otitis media. Our results demonstrate that both TLR2 and TLR4 signalling are critical to the regulation of infection in non-typeable H. influenzae-induced otitis media. Toll-like receptor-4 signalling appears to induce TLR2 expression, and TLR2 activation is critical for bacterial clearance and timely resolution of otitis media

    Activation of Epidermal Toll-Like Receptor 2 Enhances Tight Junction Function: Implications for Atopic Dermatitis and Skin Barrier Repair

    Get PDF
    Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus skin infections. S. aureus is sensed by many pattern recognition receptors, including Toll-like receptor 2 (TLR2). We hypothesized that an effective innate immune response will include skin barrier repair, and that this response is impaired in AD subjects. S. aureus–derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, claudin-1 (CLDN1), claudin-23 (CLDN23), occludin, and Zonulae occludens 1 (ZO-1) in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape stripping. Tlr2−/− mice had a delayed and incomplete barrier recovery following tape stripping. AD subjects had reduced epidermal TLR2 expression as compared with nonatopic subjects, which inversely correlated (r=-0.654, P=0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may have a role in their incompetent skin barrier

    CC Chemokine Ligand 3 Overcomes the Bacteriocidal and Phagocytic Defect of Macrophages and Hastens Recovery from Experimental Otitis Media in TNF-/- Mice

    Get PDF
    Innate immune mechanisms are crucial in defense against bacterial illnesses in humans, as evidenced by abnormal antibacterial responses due to defects in TLR signaling, seen in children with MyD88 or IL-1R–associated kinase 4 deficiency. Otitis media (OM) is the most common disease of childhood, and the role of innate immune molecules in this disorder remains unclear. In a murine model of OM, we show that, in the absence of TNF, a key effector of innate immunity, this disease is prolonged after middle ear infection with nontypeable Haemophilus influenzae (NTHi). In the absence of TNF, mice fail to upregulate both TLRs and downstream genes and proteins, such as CCL3, resulting in defects in both inflammatory cell recruitment and macrophage function. Peritoneal macrophages of mice lacking TNF have a diminished ability to phagocytose and kill NTHi, and this defect is partially corrected in vitro by exogenous rTNF. Addition of rCCL3 alone or in combination with rTNF restores phagocytosis and killing by TNF-deficient macrophages to that of unstimulated wild-type macrophages. In vivo administration of rCCL3 to animals deficient in TNF fully restores the ability to control OM due to NTHi, whereas a CCL3-blocking Ab impaired the ability of wild-type mice to recover from OM. Thus, CCL3 is a potent downstream effector of TNF-mediated inflammation in vitro and in vivo. Manipulation of CCL3 and/or TNF may prove to be effective therapeutic approaches in OM or other conditions associated with defective TNF generation

    Exogenous Addition of a C-Xylopyranoside Derivative Stimulates Keratinocyte Dermatan Sulfate Synthesis and Promotes Migration

    Get PDF
    As C-Xyloside has been suggested to be an initiator of glycosaminoglycan (GAG) synthesis, and GAGs such as Dermatan sulfate (DS) are potent enhancers of fibroblast growth factor (FGF) - 10 action, we investigated if a C-Xylopyranoside derivative, (C-β-D-xylopyranoside-2-hydroxy-propane, C-Xyloside), could promote DS production by cultured normal human keratinocytes, how this occurs and if C-Xyloside could also stimulate FGF-dependent cell migration and proliferation. C-Xyloside-treated keratinocytes greatly increased secretion of total sulfated GAGs. Majority of the induced GAG was chondroitin sulfate/dermatan sulfate (CS/DS) of which the major secreted GAG was DS. Cells lacking xylosyltransferase enzymatic activity demonstrated that C-Xyloside was able to stimulate GAG synthesis without addition to core proteins. Consistent with the observed increase in DS, keratinocytes treated with C-Xyloside showed enhanced migration in response to FGF-10 and secreted into their culture media GAGs that promoted FGF-10-dependent cellular proliferation. These results indicate that C-Xyloside may enhance epithelial repair by serving as an initiator of DS synthesis
    • …
    corecore